MATH 2028 Surface Integrals in \mathbb{R}^{3}
GOAL: Define surface integrals of functions and vector fields on surfaces in \mathbb{R}^{3}

Q: What is a "surface"?
Def n: A regular parametrized surface in \mathbb{R}^{3} is a map $g: u \rightarrow \mathbb{R}^{3}$ where $U \subseteq \mathbb{R}^{2}$ is a bounded open subset st.
(i) g is an injective C^{\prime} map
(ii) $D g(a): \mathbb{R}^{2} \rightarrow \mathbb{R}^{3}$ has rank $2 \quad \forall a \in U$ We write $S=g(u) \subseteq \mathbb{R}^{3}$.

Remark: Write $g=g(u, v)$
$D g=\left(\begin{array}{cc}\frac{\partial g}{} & \partial^{\prime} g \\ \frac{\partial u}{u} & \frac{1}{\partial v}\end{array}\right)$ has rank 2
$\Leftrightarrow\left\{\frac{\partial g}{\partial u}, \frac{\partial g}{\partial v}\right\}$ linearly independent in \mathbb{R}^{3}

$$
\Leftrightarrow \quad \frac{\partial g}{\partial u} \times \frac{\partial g}{\partial v} \neq \overrightarrow{0}
$$

We define the unit normal of S (w.v.t. $g(u, v)$) as

$$
\vec{n}=\frac{\frac{\partial g}{\partial u} \times \frac{\partial g}{\partial v}}{\left\|\frac{\partial g}{\partial u} \times \frac{\partial g}{\partial v}\right\|}
$$

Example 1: (cone)

$$
\begin{aligned}
& g:(\overbrace{0,2 \pi) \times(0, a)} \rightarrow \mathbb{R}^{3} \\
& g(u, v)=(v \cos u, v \sin u, v)
\end{aligned}
$$

Claim: This is a regular parametrized surface with $S=$ cone 1ℓ.

- g is C^{\prime} and 1-1

$$
\left.\left.\begin{array}{l}
\frac{\partial g}{\partial u}=(-v \sin u, v \cos u, 0) \\
\frac{\partial g}{\partial v}=(\cos u, \sin u, 1)
\end{array}\right\} \begin{array}{l}
\text { linearly } \\
\text { indep. }
\end{array}\right\}
$$

- $\vec{n}=\frac{\frac{\partial g}{\partial u} \times \frac{\partial g}{\partial v}}{\left\|\frac{\partial g}{\partial u} \times \frac{\partial g}{\partial v}\right\|}=\frac{1}{\sqrt{2}}(\cos u, \sin u,-1)$

Example 2 : (sphere)
Fix $a>0$.

$$
g: \overbrace{(0, \pi) \times(0,2 \pi) \longrightarrow \mathbb{R}^{3}}^{u \subseteq \mathbb{R}^{2}} \begin{aligned}
& g(\phi, \theta)=(a \sin \phi \cos \theta, a \sin \phi \sin \theta, a \cos \phi)
\end{aligned}
$$

"spherical coordinates"
Claim: This is a regular parametrized surface with $S=$ sphere 1ℓ.

- g is C^{\prime} and $1-1$

$$
\begin{aligned}
& \frac{\partial g}{\partial \phi}=(a \cos \phi \cos \theta, a \cos \phi \sin \theta,-a \sin \phi) \\
& \frac{\partial g}{\partial \theta}=(-a \sin \phi \sin \theta, a \sin \phi \cos \theta, 0) \\
& \frac{\partial g}{\partial \phi} \times \frac{\partial g}{\partial \theta}=\left(a^{2} \sin ^{2} \phi \cos \theta, a^{2} \sin ^{2} \phi \sin \theta, a^{2} \sin \phi \cos \phi\right) \\
& \left.\left\|\frac{\partial g}{\partial \phi} \times \frac{\partial g}{\partial \theta}\right\|=a^{2} \sin \phi>0 \quad(\because \phi \in \operatorname{con} \pi)\right) \\
& \vec{n}=\frac{\frac{\partial g}{\partial \phi} \times \frac{\partial g}{\partial \theta}}{\left\|\frac{\partial g}{\partial \phi} \times \frac{\partial g}{\partial \theta}\right\|}=(\sin \phi \cos \theta \cdot \sin \phi \sin \theta, \cos \phi)
\end{aligned}
$$ the sphere

Example 3: (Graphical surface)

Given a C^{\prime} for $f: U \rightarrow \mathbb{R}$, we have the graph of f given by the surface S parametrized by

$$
\begin{aligned}
& g(u, v): u \longrightarrow \mathbb{R}^{3} \\
& g(u, v)=(u, v, f(u, v))
\end{aligned}
$$

Note that g is $1-1$ and C^{\prime}.

$$
\begin{aligned}
& \frac{\partial g}{\partial u}=\left(1,0, \frac{\partial f}{\partial u}\right)\left\{\begin{array}{l}
\text { always } \\
\text { linearly } \\
\text { independent! } \\
\frac{\partial g}{\partial v}=\left(0,1, \frac{\partial f}{\partial v}\right)
\end{array}\right. \\
& \frac{\partial g}{\partial u} \times \frac{\partial g}{\partial v}=\left(-\frac{\partial f}{\partial u},-\frac{\partial f}{\partial v}, 1\right) \\
& \left\|\frac{\partial g}{\partial u} \times \frac{\partial g}{\partial v}\right\|=\sqrt{1+\left(\frac{\partial f}{\partial u}\right)^{2}+\left(\frac{\partial f}{\partial v}\right)^{2}}=\sqrt{1+|\nabla f|^{2}}>0 \\
& \vec{n}=\frac{\frac{\partial g}{\partial u} \times \frac{\partial g}{\partial v}}{\left\|\frac{\partial g}{\partial u} \times \frac{\partial g}{\partial v}\right\|}=\frac{1}{\sqrt{1+|\nabla f|^{2}}}\left(-\frac{\partial f}{\partial u},-\frac{\partial f}{\partial v}, 1\right)
\end{aligned}
$$

points "upward"

Q: How to define "orientation" of a surface?
Def: An orientation on $S \subseteq \mathbb{R}^{3}$ is a globally defined unit normal $\vec{n}: S \rightarrow \mathbb{R}^{3}$ which is continuous on all of S.

If such an \vec{n} exists, we say that S is orientable. Otherwise, it is called non-orientable.

Example: The sphere is orientable with two possible orientations :

outward
normal

inward normal

Example: A famous example of non-orientable surface is the Mobius strip
 does not match after going around once!

Def: Let $S \subseteq \mathbb{R}^{3}$ be a surface parametrized by $g(u, v): u \rightarrow \mathbb{R}^{3}$ and $f: S \rightarrow \mathbb{R}$ be a cts function. THEN: the surface integral of f over S is

$$
\int_{S} f d \sigma:=\iint_{U}(f \cdot g)\left\|\frac{\partial g}{\partial u} \times \frac{\partial g}{\partial v}\right\| d A
$$

In particular. the surface area of S is

$$
\operatorname{Area}(S):=\int_{S} 1 d \sigma
$$

Example 1: (cone)

$$
\overbrace{i=a}^{s}
$$

$$
\begin{aligned}
& g: \overbrace{(0,2 \pi) \times(0, a)}^{u \subseteq \mathbb{R}^{2}} \rightarrow \mathbb{R}^{3} \\
& g(u, v)=(v \cos u, v \sin u, v) \\
& \text { Area }(S)=\iint_{u}\left\|\frac{\partial g}{\partial u} \times \frac{\partial g}{\partial v}\right\| d A \\
& =\int_{0}^{2 \pi} \int_{0}^{a} \sqrt{2} v d v d u=\sqrt{2} \pi a^{2}
\end{aligned}
$$

Example 2 : (sphere)

$$
\begin{align*}
& g:(0, \pi) \times(0,2 \pi) \longrightarrow \mathbb{R}^{3} \\
& g(\phi, \theta)=(a \sin \phi \cos \theta, a \sin \phi \sin \theta, a \cos \phi) \\
& \text { Area }(S)=\int_{\int_{u}}^{u}\left\|\frac{\partial g}{\partial \phi} \times \frac{\partial g}{\partial \theta}\right\| d A \\
& =\int_{0}^{\pi} \int_{0}^{2 \pi} a^{2} \sin \phi d \theta d \phi=4 \pi a^{2}
\end{align*}
$$

Remark: The surface integral $\int_{S} f d \sigma$ depends only on the surface $S=g(u)$ BuT not on the actual parametrization g.

Why? The $\left\|\frac{\partial g}{\partial u} \times \frac{\partial g}{\partial v}\right\|$ term describes the infinitesimal "area distortion" caused by the parametrization.

Remark: (switch orientation of a surface)
Given a parametrized surface $\delta=g(U)$ given by $g(u, v): u \rightarrow \mathbb{R}^{3}$, we can define another parametrized surface

$$
\tilde{g}(v, u): \tilde{u} \rightarrow \mathbb{R}^{3}
$$

by $\quad \tilde{g}(v, u):=g(u, v)$
where $\tilde{u}==\{(v, u) \mid(u, v) \in u\}$.

Def n: Let $S \subseteq \mathbb{R}^{3}$ be a surface parametrized by $g(u, v): u \rightarrow \mathbb{R}^{3}$ and $F: S \rightarrow \mathbb{R}^{3}$ be a cts vector field. THEN: the surface integral of F over S is

$$
\int_{S} F \cdot \vec{n} d \sigma:=\iint_{u}(F \cdot g) \cdot\left(\frac{\partial g}{\partial u} \times \frac{\partial g}{\partial v}\right) d A
$$

We also call this the flux of F across S.
Remark: $\int_{S} F \cdot \vec{n} d \sigma$ is independent (up to a sign) of the parametrization of S.

Example 4 : Compute the flux of the vector field $F(x, y, z)=(x, y, 0)$ across the Sphere S of radius $a>0$ centered at the origin. oriented by the out ward normal.

Solution:
Step 1 : Fix a parametrization.

$$
\begin{aligned}
& g:(0, \pi) \times(0,2 \pi) \rightarrow \mathbb{R}^{3} \\
& g(u, v)=(a \sin u \cos v, a \sin u \sin v, a \cos u) \\
& \text { Recall: } \frac{\partial g}{\partial u} \times \frac{\partial g}{\partial v}=a^{2} \sin u(\sin u \cos v . \sin u \sin v, \cos u) \\
& F \circ g=(a \sin u \cos v, a \sin u \sin v, 0) \\
& \Rightarrow(F \cdot g) \cdot\left(\frac{\partial g}{\partial u} \times \frac{\partial g}{\partial v}\right)=a^{3} \sin ^{3} u
\end{aligned}
$$

Therefore,

$$
\int_{S} F \cdot \vec{n} d \sigma=\int_{0}^{2 \pi} \int_{0}^{\pi} a^{3} \sin ^{3} u d u d v=\frac{8 \pi}{3} a^{3}
$$

Example 5: Compute the flux of the vector field $F(x, y, z)=\left(y,-x, z^{2}\right)$ across the surface S which is the portion of paraboloid $z=x^{2}+y^{2}$ between $z=0$ and $z=1$. oriented by the "upward" pointing unit normal \vec{n}.

Solution: Note that
S is the graph of of the function

over the domain

$$
u=\left\{(x, y) \mid x^{2}+y^{2} \leqslant 1\right\} .
$$

Parametrization: $g: u \rightarrow \mathbb{R}^{3}: g(u, v)=\left(u, v, u^{2}+v^{2}\right)$

$$
\begin{aligned}
& \left.\begin{array}{l}
\frac{\partial g}{\partial u}=(1,0,2 u) \\
\frac{\partial g}{\partial v}=(0,1,2 v)
\end{array}\right\} \Rightarrow \frac{\partial g}{\partial u} \times \frac{\partial g}{\partial v}=\underbrace{(-2 u,-2 v, 1)}_{\text {points "upward" }} \\
& (F \circ g)(u, v)=\left(v,-u,\left(u^{2}+v^{2}\right)^{2}\right)
\end{aligned}
$$

$$
(F \circ g) \cdot\left(\frac{\partial g}{\partial u} \times \frac{\partial g}{\partial v}\right)=\left(u^{2}+v^{2}\right)^{2}
$$

Therefore, we have

$$
\begin{aligned}
\int_{S} F \cdot \vec{n} d \sigma & :=\iint_{u}(F \cdot g) \cdot\left(\frac{\partial g}{\partial u} \times \frac{\partial g}{\partial v}\right) d A \\
& =\iint_{u}\left(u^{2}+v^{2}\right)^{2} d A \\
& =\int_{0}^{2 \pi} \int_{0}^{1} r^{4} \cdot r d r d \theta=\frac{\pi}{3}
\end{aligned}
$$

-

